

Current Technology and Challenges for Medical Imaging Modalities

Terry Peters
Robarts Research Institute
London ON

Mark Henkelman
Mouse Imaging Centre,
Hospital for Sick Children
Toronto

Overview

- History and overview of current imaging systems
- Applications
- Challenges
- Small animal imaging challenges (Mark Henkelman)

Medical Imaging Modalities

- X-ray Imaging
- CT Scanning
- Magnetic Resonance Imaging
 - anatomical Imaging
 - functional MRI
 - fibre tract imaging
- Positron Emission Tomography
- Ultrasound

• Discovered in 1895

- Discovered in 1895
- Mainstay of medical imaging till 1970's

- Discovered in 1895
- Mainstay of medical imaging till 1970's
- 1971 CAT (CT) scanning

- Discovered in 1895
- Mainstay of medical imaging till 1970's
- 1971 CAT (CT) scanning
- 1977 PET scanning

- Discovered in 1895
- Mainstay of medical imaging till 1970's
- 1971 CAT (CT) scanning
- 1977 PET scanning
- 1978 Digital Radiography

- Discovered in 1895
- Mainstay of medical imaging till 1970's
- 1971 CAT (CT) scanning
- 1977 PET scanning
- 1978 Digital Radiography
- 1980 Magnetic Resonance Imaging

X-ray System

Film-screen
cassette
Screen – X-ray to
light conversion
Film – Recentor

Film — Receptor
Display
Storage

Electronic receptor

~10MB / image

Typical X-ray system

Digital radiographs

Univ Washington teaching file

Dr Martin Yaffe SWCHSC, Toronto

C-arm angiography

David Holdsworth RRI

Fields Workshop, Waterloo Oct 22, 2005

X-ray angiography - imaging

vessels

Arterial

A-V

Cardiac

Neuro

Fields Workshop, Waterloo Oct 22, 2005

CT Scanning

- Cross-sections using x-rays.
- Acquire projections of body from different directions
- Back-project HP filtered projections onto reconstruction plane

Back-projecting Filtered Projections

Fields Workshop, Waterloo Oct 22, 2005

Alternative Viewpoint - Central Section Theorem

CT Reconstruction

CT Scanning

- Original
 - 80 x 80 Single or two slices
 - 4 mins acquisition time
 - 4-10 mins per slice recon
- Today
 - 64 slices simultaneously
 - < 1 sec acquisition</p>
 - ~ .25 sec/slice recon

Dynamic CT

Beating Heart

CT Angiography

Fields Workshop, Waterloo Oct 22, 2005

Virtual Endoscopy (colonoscopy)

Magnetic Resonance Imaging

- Uses principles of Nuclear Magnetic Resonance (NMR)
- Roots in Physics and Chemistry labs
- Images magnetic properties of tissue
- Builds on mathematical foundation of CT
- Became MRI in medical imaging community "Nuclear" considered politically incorrect!
- "Most important medical breakthrough since the invention of Xrays"

Magnetic Resonance Imaging

- H¹ nuclei wobble (precess) in a magnetic field
- Precessing nuclei emit rf signals
- Frequency of wobble depends on magnetic field
- Place body in a spatially (and time)varying magnetic field
- Record spectrum of emitted rf signals
- Fourier transform turns these signals into an imageelds Workshop, Waterloo Oct 22, 2005

gradient field

no external field

Magnetic field and rf excitation

rf from nuclei

Antenna

FT

(to unscramble frequency components)

MR data are collected in FT domain!!!

FT of image (K-space)

Reconstructed image

Dynamic MRI

Magnetic Resonance Angiography

- MR scanner tuned to measure only moving structures
- "Sees" only blood no static structure
- Generate 3-D image of vasculature system
- May be enhanced with contrast agent e.g. Gd-DTPA

Functional MRI (fMRI)

- Oxygenated and deoxygenated blood have slightly different paramagnetic properties
- Signal generated by excited protons decays more rapidly in de-oxygenated blood
- Local blood oxygenation related to brain metabolic activity
- fMRI image is map of the bloodoxygenation level dependent (BOLD) effect on anatomical MR image

fMRI

Subjects performing non-verbal working memory task: (Mental problem solving)

Non-drinker Alcoholic
Fields Workshop, Waterloo Oct 22, 2005
S. A. Brown, and G.G. Brown, UCSD

₹robarts

fMRI

Ocular Dominance Columns

by [³H] labeling (Hubel and Wiesel, 1977)

by Goodyear & R. Menon, 2001

by 2-[14C] deoxy-Glucose method (Kennedy et al., 1976)

Fields Workshop, Waterloo Oct 22, 2005

Diffusion-Weighted MRI

- Image diffuse fluid motion in brain
- Construct "Tensor image" –
 extent of diffusion in each
 direction in each voxel in image
- Diffusion along nerve sheaths defines nerve tracts.
- Connect the vectors between slices to create images of nerve connections/pathways

Tractography

- Data analysed after scanning
- Identify "streamlines" of vectors
- Connect to form fibre tracts
- 14 min scan time

30 Years of MRI

First brain MR image

Typical T2weighted MR image today

MRI

- 20 years ago
 - Single slice
 - -.5 2 mins per slice
- Today
 - Sub-second per slice
 - Volumetric imaging
 - (Still 30 mins for volume image of beating heart – involves breath-hold)

Positron Emission Tomography

- Inject metabolically active positron emitting isotope
- Positron interacts with electron
 - Mutual annihilation
 - 511 keV gamma rays emitted
- Coincidence detection in opposing detectors give line on which annihilation occurred
- Multiple lines used in CT- style reconstruction

Positron Annihilation

Crump Institute for Biological Imaging UCLA

PET Scanning

- Track dynamics of radio-labeled metabolites
- Quantitative analysis of metabolic function
- Detect abnormal organ function

PET-CT

- Pet scanner and CT combined in same unit
- PET provides function
- CT provides anatomy
- Intrinsic registration between both images
- CT image aids reconstruction of isotope distribution

3-D Animal CT

Bench-top scanner for animal specimens

Scanner for live animals

CT mouse Scans

GE Health Systems

Results: in vitro 3-D µCT

~20 µm resolution

David Holdsworth RRI

Ultrasound

Cardiac ultrasound

Intra-cardiac echo

Registered with MRI

MRI

- Generally non-invasive (but new contrast agents are not!)
- Solid tissues like bone are "transparent" as signal is due to H₂O content in tissue
- Generally well tolerated with excellent safety
- Functional aspects of tissues can be determined like blood oxygenation in brain in response to stimuli
- Excellent diagnostic characteristics of tumour and other tissues due to differences in H₂O environments
- Geometrical accuracy can present problems for surgical guidance
- Need: Volumetric dynamic scanning

CT

- Very high resolution
- Intrinsic geometrical accuracy
- Isotropic imaging with modern multi-detector spiral scanners (0.5mm)³ voxels
- Full volume scan in several seconds
- Excellent bone contrast
- Poor soft-tissue contrast
- Vascular images with contrast agent
- "Real-time" (5-10 fps) single slice "fluoro mode"
- Need: faster scanning at lower dose

Ultrasound

- Inexpensive, portable
- Real-time
- 2D and 3D dynamic
- Images sonic interfaces between tissues
- Cannot penetrate bone/air
- Geometrical accuracy limited by US refractive index changes
- Often only choice for intra-operative imaging
- Need: miniature 4D transducers

Data Storage and Analysis

- Dynamic Cardiac CT
 - $-512^3 \times 20 (5.2 \text{ GB})$
- Dynamic MRI
 - $-256^3 \times 15 (0.5 \text{ GB})$
- Micro CT of Mouse
 - -~0.4 GB

Visualization

- Data must be visualized efficiently
- Interacting with GB datasets in a dynamic image is major challenge
- Effectively combine multimodal data
- Employ combination of surface, volume and texture mapping
- Use capabilities of HW graphics boards.

Navigating the functional brain!

"Wow! That was a good one! Try it – just poke his brain where my finger is!"

Applications in Image-Guidance

Non-rigid brain registration

- Map atlases from standard brain to patient
- Collect EP data from multiple patients in standard image volume
- Map EP database to patient

Intra-Operative MR/US warp

Challenges

- Ready availability of 3D/4D datasets in viewing room/OR
- Cross reference to other images of same patient
- Rapidly interrogate hi-res 3D dynamic images
- Integrate with surgical guidance

Computational Challenges

- The fusion of image data of varying modalities, over differing spatial and temporal scales and resolutions
- The extraction and display of quantitative information, with associated uncertainties
- Data archiving: raw vs. extracted parameters, development of metadata standards

^{*}Report commissioned by DOE and NIBIB

An example - Image-guidance for Cardiac surgery

- Register pre-operative, intra-op images to patient
- Synchronize pre- and intra-op images
- Track instruments and register to dynamic environment
- Visualize and interact with volume

