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Multiresolution Transforms 
in Biomedical Applications

Jelena Kovačević

communications

biomedical applications

compression

…

Almost all the images and signals were obtained in Matlab, using the Wavelet 
Toolbox. When this is not the case, I will specify it.
In instructions on how to obtain them, first do

wavemenu
in Matlab. This brings up the mail Wavelet Toolbox GUI. I used four different 
functions:

Wavelet 1-D (W1D)
Wavelet Packet 1-D (WP1D)
Wavelet 2-D (W2D)
Wavelet Packet 2-D (WP2D)

I will refer to them as specified in parentheses.



2

MR: Why?

Localization
Adaptivity
Computational efficiency
Wide use in medical imaging
Subsumes many well known transforms

Comments on the slide
Some of the most important and useful characteristics of multiresolution are listed 
above. We now look at each individually.
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MR: What?

Analysis and processing at different resolutions
Resolution: amount of information

Lower or higher resolution?

•Image on the left: image_original.jpg
How obtained:W2D

File Example Analysis At level 2, with Haar Woman
Choose the original image

•Image on the right: image_lr_1.jpg
How obtained:W2D

File Example Analysis At level 2, with Haar Woman
Choose 1 level
Choose the UL (upper left) image in the Image Selection box

Comments on the slide
This slide illustrates the concept of resolution as the amount of information in a 
signal. If one looks at the two images and they look as they were “equally sharp”, 
the one on the left is of higher resolution just by the virtue of the fact that it is 
larger. In fact, the image on the right was obtained as the LL subband in 1-level 
DWT.
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MR: What?

Analysis and processing at different resolutions
Resolution: amount of information

Lower or higher resolution?

•Image on the left: image_original.jpg
How obtained:W2D

File Example Analysis At level 2, with Haar Woman
Choose the original image

•Image on the right: image_lr_reconstructed.jpg
How obtained:W2D

File Example Analysis At level 2, with Haar Woman
Select the UL (upper left) image in the Image Selection box
Click on Reconstruct in Operations on Selected Image (right panel)
Choose the image Recons. Approx. coef. of level 2

Comments on the slide
This slide continues the story from the previous one. Here, the one can say that the 
left is of higher resolution than the right since it is clear that the right one is missing 
some information (sharpness of detail). This is true since the right image is obtained 
by interpolating the right image from the previous slide.
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MR: What?

Analysis and processing at different resolutions
Resolution: amount of information

Lower or higher resolution?

•Image on the left: image_lr_1.jpg
How obtained:W2D

File Example Analysis At level 2, with Haar Woman
Choose 1 level
Choose the UL (upper left) image in the Image Selection box

•Image on the right: image_lr_reconstructed.jpg
How obtained:W2D

File Example Analysis At level 2, with Haar Woman
Select the UL (upper left) image in the Image Selection box
Click on Reconstruct in Operations on Selected Image (right panel)
Choose the image Recons. Approx. coef. of level 2

Comments on the slide
Same story as before. Now it is not as clear what one should pick and just by 
looking at them it is hard to be sure which one is of higher resolution and which one 
is lower. In this particular case, they are both of the same resolution as the right one 
is the interpolated version of the left one, and thus, no new information has been 
added.
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Localization

Zoom-in on singularities

MapQuest: Search for Loews Theatre on 68th & Broadway, NYC
Comments on the slide
Wavelets have the ability to zoom in on singularities. An example is MapQuest
where if you search for something, you can look on which continent it is located, 
followed by a region, followed by a city and finally, followed by a street view. You 
refine your search by using a zooming tool.
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Localization

Zoom-in on singularities

•Graph: decomposition_step_db2_5.jpg
How obtained:W1D

File Example Analysis Basic Signals w db2 at level 5 
Step signal

Comments on the slide
Here is an example of a signal—step signal, and how the WT zooms in on the 
singularity—step. You can see that at the finest level, the detail coefficients d1 are 
all 0 except in the vicinity of the step. This analysis is performed with the db2 filters 
which are of length 4. As the level gets higher (coarser), the support of the filter 
operating on the signal gets longer and longer, and thus more and more coefficients 
in the vicinity of the step catch it, making the result fatter.
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Localization

Zoom-in on singularities

•Image: decomposition_ball_bi5.5_3.jpg
How obtained:W1D

File Example Analysis At level 3, with bior5.5 Facets
Choose View Mode: Tree

Comments on the slide
This slide shows the same as the previous except on images. Again, the singularities 
(edges) are best seen at the finest (lowest) level while they become blurred as the 
level becomes higher.
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Localization

Characterize singularities

•Graph: singularities.jpg
How obtained:W1D

File Load Signal singularities.mat
Choose Wavelet: Haar, Level: 5
Click Analyze

Comments on the slide
This slides demonstrates the ability of the wavelet transform not only to detect 
singularities but to characterize them as well. The graph has three different types of 
singularities and they all behave differently across scales. By measuring the 
amplitude and behavior of the singularity across scales, one can determine its 
location and type.
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Denoising

Separate signal from noise

•Graph: decomposition_blocks_denoise.jpg
How obtained:W1D

File Example Analysis 
Noisy Signals – Constant Noise Variance 
with sym8 at level 5 Noisy blocks

Click De-noise
Click De-noise again in the new window that pops up

Comments on the slide
The power of multiresolution shows itself also in its ability to separate signal from 
noise. If something about the noise is known apriori, one can look at the behavior of 
coefficients across scales and decide which belong to noise and which to the signal. 
Those deemed to belong to noise are simply removed and the signal is reconstructed 
without them. The yellow lines on the left side of the graph denote the threshold 
below which the coefficients are eliminated. The original signal is given in red on 
the right side and the denoised one in yellow.
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Adaptivity: Holy Grail of Signal 
Analysis/Processing

Understand the “blob”-like structure of the energy 
distribution in the time-frequency space
Design a representation reflecting that

t

f

Comments on the slide
The adaptivity is a big advantage of MR techniques. The Fourier transform does
analysis with a fixed window both in time and frequency and thus localizing 
features in either time or frequency is possible only within a fixed window. 
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“Holy Grail” of Signal 
Analysis/Processing 

Understand the “blob”-like 
structure of the energy 
distribution in the time-
frequency space
Design a representation 
reflecting that

The adaptivity is a big advantage of MR techniques. The Fourier transform does analysis 
with a fixed window both in time and frequency and thus localizing features in either time 
or frequency is possible only within a fixed window. 
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Adaptivity: Trade-offs
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Comments on the slide
To illustrate that concept, consider a sampled sinusoid of fairly low frequency with 
an impulse superimposed on it (top graph). The upper left graph shows what would 
happen if we analyzed this signal with a basis consisting of shifted impulses---each 
impulse would catch what happens at exactly that point in time. This analysis is 
perfect for isolating time discontinuities but does nothing for isolating the frequency 
of the sinusoid---it is spread over all frequencies. At the other end of the spectrum is 
the Fourier transform (upper right graph) where, obviously, the sinusoid is isolated 
perfectly while the time discontinuity cannot be resolved as it has been spread over 
all time. The bottom left tries to alleviate that problem by windowing the sinusoids 
in the Fourier transform (short-time Fourier transform). Indeed, some time 
localization has been bought at the expense of frequency localization. The problem 
is that the once fixed, the window determines how finely we can isolate locally fast 
events both in time and frequency. Finally, the bottom right shows the wavelet 
transform and the trade-off it offers; at high frequencies, the time discontinuity is 
caught while at low frequencies the frequency discontinuity shows up (the 
sinusoid). Note a catch here: if the sinusoid had been of high frequency, then it 
would not have been isolated well. This is solved by using arbitrary trees, those 
which adapt themselves to the signal at hand.
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Adaptivity: Trade-offs

high frequency lower frequency

•Graph on the left: sin_0.9pi_dirac.jpg
How obtained:WP1D

File Load Signal sin_0.9pi_dirac.mat
Choose Wavelet: Haar, Level: 3
Click Analyze
Click Wavelet Tree

•Graph on the right: sin_0.3pi_dirac.jpg
How obtained:WP1D

File Load Signal sin_0.3pi_dirac.mat
Choose Wavelet: Haar, Level: 3
Click Analyze
Click Wavelet Tree

Comments on the slide
Here we have a similar example where on the left side we have a high frequency 
with an impulse and on the right a lower frequency and the impulse. Below are the 
time-frequency tilings obtained by using the DWT. It is obvious that on the right the 
frequency is identified to fall somewhere in the upper half of the spectrum while on 
the right it falls within the middle quarter or so. 
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Adaptivity: Trade-offs

lowest frequency
DWT

lowest frequency
STFT/Gabor

•Graph on the left: sin_0.05pi_dirac.jpg
How obtained:WP1D

File Load Signal sin_0.05pi_dirac.mat
Choose Wavelet: Haar, Level: 3
Click Analyze
Click Wavelet Tree

•Graph on the right: sin_0.05pi_dirac_stft.jpg
How obtained:WP1D

File Load Signal sin_0.05pi_dirac.mat
Choose Wavelet: Haar, Level: 3
Click Analyze

Comments on the slide
Here we have a very low frequency and the impulse. On the left is analysis with the 
DWT and on the right with the Fourier. Both analyses isolate the frequency equally 
well; however, the DWT is more precise in isolating the impulse. Note how the 
precision with which the FT isolates the pulse is not as fine (the impulse if fatter) as 
that of the DWT at high frequencies.
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Adaptivity

These were produced by Tad Merryman.
Comments on the slide
This slide illustrates the power of wavelet packets on an image. These images depict 
two different proteins in the cell (both are fluorescence microscopy images) and on 
the right is the best wavelet packet tree found by using the energy in the subband as 
the criterion.
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MR: How?

Decomposition into time-frequency atoms

*

*

*+ +

+ +

=

*

•Image on the left: detail_original.jpg
How obtained:W2D

File Example Analysis At level 3, with sym4 Detail Durer
Choose Wavelet: Haar, Level: 1 
Choose Original Image

•Small images on the right: detail_LL.jpg, detail_LH.jpg, 
detail_HL.jpg, detail_HH.jpg

How obtained:W2D
File Example Analysis At level 3, with sym4 Detail Durer
Choose Wavelet: Haar, Level: 1 
Choose the four images in the Image Selection box
(UL=LL, UR=LH, LL=H, LR=HH)

Comments on the slide
This slide demonstrates how we do decomposition into time-frequency atoms. In 
this case, these are Haar, applied separately in both directions (thus you obtain the 
little 2x2 squares where black denotes a -1 and white denotes a 1). The image is 
obtained as a linear combination of these time-frequency atoms, where the 
coefficients in the expansion are the four images given above.
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MR: How?

Decomposition into time-frequency atoms

+ +

+ +

=

•Image on the left: detail_original.jpg
How obtained:W2D

File Example Analysis At level 3, with sym4 Detail Durer
Choose Wavelet: Haar, Level: 1 
Choose Original Image

•Images on the right: detail_LL_rec.jpg, detail_LH_rec.jpg, 
detail_HL_rec.jpg, detail_HH_rec.jpg

How obtained:W2D
File Example Analysis At level 3, with sym4 Detail Durer
Choose Wavelet: Haar, Level: 1 
Select the UL/UR/LL/LR image in the Image Selection box
Click on Reconstruct in Operations on Selected Image 
Choose the image Recons. Approx. coef./detail of level 1

Comments on the slide
When the products are computed, one can look at the decomposition also as the sum 
of 4 subimages. The first one keeps high frequencies (lowpassed both in horizontal 
and vertical directions, LL), the second one has been highpassed horizontally and 
lowpassed vertically (HL), the third one is the reverse LH and the fourth one has 
been highpassed in both directions HH.
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MR: How?

x = synthesize (do something) analyze x
X = analyze x

= x

Same images as on Slide 16.
Comments on the slide
Mathematically, the analysis process is given as a vector/matrix operation, where 
we have a matrix operating on the input signal to produce the four middle signals 
(called subbands, channels, etc.)
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MR: How?

x = synthesize (do something) analyze x
x = synthesize X

= x

Same images as on Slide 16.
Comments on the slide
On the synthesis side, we do the opposite. In the Haar case, the filters/basis 
functions used in analysis/synthesis are the same as the basis is orthonormal.
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Aside: How X is Represented

=

Same images as on Slide 16.
Comments on the slide
Digression: In image processing, and in Matlab, one often represents the four 
subimages in the same area as the image itself, with the LL subband in the upper 
left-hand corner.
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MR: How?

x = synthesize (do something) analyze x

Structure of analyze and synthesize given by TF

. x

X2

X 1

α

. x

X 2=x2

X1=x1

orthogonal biorthogonal

Comments on the slide
We have seen how one can analyze and synthesize. The way we choose these 
operators are given to us by time-frequency constraints. This slide illustrates two 
possible nonredundant bases, orthogonal and biorthogonal.
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MR: How?

Filter banks: SP tools to implement these expansions
Develop filter banks by trying to implement an expansion 
having a better t-f resolution than Diracs

Comments on the slide
We now answer how to implement these multiresolution expansions.
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Slightly Better TF than Diracs

Split the frequency in half
means we can downsample by 2
to reconstruct upsample by 2
filter to remove unwanted images and add
Basic building block: Two-channel filter bank

t

fh h

g g
x x

analysis synthesisprocessing

Comments on the slide
The motivation is to obtain a time-frequency analysis slightly better than that of 
Diracs (impulses). This means we want to refine the frequency resolution. A natural 
way is to try to divide the spectrum in two parts. As the Nyquist frequency has now 
been lowered, we can sample, and to reconstruct we have to upsample and filter 
again. This gives rise to a basic building block --- the two-channel filter bank. As 
you can see, the tf tiling is indeed better in frequency with a slightly worse one in 
time. 
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Slightly Better TF than Diracs

•Graph on the left: twosines.jpg
How obtained:W1D

File Load Signal twosines.mat
Choose Wavelet: Haar, Level: 1
Click Analyze

•Graph on the right: twosines_WP_1_STFT.jpg
How obtained:WP1D

File Load Signal twosines.mat
Choose Wavelet: Haar, Level: 1
Click Analyze

Comments on the slide
An example of how this works. This graph has a sum of two sines, one large of low 
frequency, and one tiny of much higher frequency, superimposed on top of the large 
one. If you look at the second and third graph on the left side, you can see that the 
coarse channel gets the low-frequency sinusoid out and the other channel gets the 
tiny sinusoid almost out. Also in the tiling on the right side, it is obvious that the 
low-frequency sinusoid has been well separated. The high-frequency one is not that 
obvious since its amplitude is really small.
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Slightly Better TF than Diracs

+ +

+ +

=

Same images as on Slide 17.
Comments on the slide
In 2D, we typically use the filter banks first across the rows and then across the 
columns (although this is not really necessary). The result are four subbands as we 
have seen before.
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What Else Can We Do?

Grow the full tree – STFT/Gabor

t

f

Comments on the slide
What else can we do? We can split into a full tree, splitting every subband further, 
resulting in a STFT splitting.
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What Else Can We Do?

t

Grow the full tree – STFT/Gabor

•Graph on the right: sin_0.05pi_dirac_stft.jpg
How obtained: WP1D

File Load Signal sin_0.05pi_dirac.mat
Choose Wavelet: Haar, Level: 3
Click Analyze

•Graph in the middle: twosines_WP_3_STFT.jpg
How obtained: WP1D

File Load Signal twosines.mat
Choose Wavelet: Haar, Level: 3
Click Analyze

•Images on the right: detail_WP_2_STFT.jpg
How obtained: WP2D

File Example Analysis db1-depth:1-ent:shannon detail
Choose Wavelet: Haar, Level: 2
Click Analyze

Comments on the slide
This slides shows the STFT for the low frequency plus an impulse, two sinusoids and a 2D signal. 
One can see how the STFT isolates the sinusoids well but not the impulse.
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What Else Can We Do?

Iterate only on the lowpass channel – DWT

t

f

Comments on the slide
Another option is to iterate the splitting only on the lowpass channel, leading to the 
DWT.
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What Else Can We Do?

Iterate only on the lowpass channel – DWT

•Graph on the right: sin_0.05pi_dirac.jpg
How obtained: WP1D

File Load Signal sin_0.05pi_dirac.mat
Choose Wavelet: Haar, Level: 3
Click Analyze

•Graph in the middle: twosines_WP_3_DWT.jpg
How obtained: WP1D

File Load Signal twosines.mat
Choose Wavelet: Haar, Level: 3
Click Analyze
Click Wavelet Tree

•Images on the right: detail_WP_2_DWT.jpg
How obtained: WP2D

File Example Analysis db1-depth:1-ent:shannon detail
Choose Wavelet: Haar, Level: 2
Click Analyze
Click Wavelet Tree

Comments on the slide
Here is an example of the DWT applied on the low frequency plus an impulse, two sinusoids and a 
2D signal. Again, one can see the trade-off offered by the DWT, it isolates well both the low-
frequency sinusoid and the impulse. However, it does not isolate well the high-frequency sinusoid in 
the second graph.
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What Else Can We Do?

First grow the full tree

t

f

Comments on the slide
Finally, to adapt ourselves to the signal, we first grow the full tree.
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What Else Can We Do?

Then prune the tree – wavelet packets (WP)

t

f

Comments on the slide
We then prune the tree based on some cost function. For example, we might ask 
ourselves, is it going to cost me more or less to code these two children or the 
parent? If it costs me less to code the children, I keep the children, if not, I keep the 
parent. This yields a time-frequency tiling adapted to the signal at hand.



33

Wavelet Packets

First stage: full decomposition
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Wavelet Packets

Second stage: pruning
Cost(parent) >< Cost(children)?Cost(parent)   < Cost(children)
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What Else Can We Do?

Same images as on Slide 16.
Comments on the slide
Here is an example with the two proteins and WP trees for each one.



36

What Else Can We Do?

These images were produced by Pablo Henning Yeomans and Jason Thornton.
This was in the context of the identification/verification for biometrics.
Comments on the slide
This example is for fingerprint images (8 of them given on top). The WP trees for 
all 20 classes are given on the bottom illustrating how WP trees actually serve to 
distinguish between different classes.
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What Else Can We Do?

This image was produced by Pablo Henning Yeomans and Jason Thornton.
This was in the context of the identification/verification for biometrics.
Comments on the slide
This is a particular example of a fingerprint with its wavelet packet tree.
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What If We Want to Go Redundant?

Frames: Nonredundant decompositions
Robustness to noise
Robustness to losses
Freedom in design
Shift-invariance
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Bases versus Frames?

Bases are nonredundant
Loss of one transform coefficient is irreplaceable
Sensitivity to noise is great
Space of possible solutions is restricted 

Solution: frames

0
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n-1

0

1

n-1

0

1

n-1

0

1

n-1

Processing

Inverse
TransformTransform

n x n n x n

m-1 m-1

m x n n x m
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Robustness to Noise

Noise is spread over more components: easier to clean

0

1

n-1

Frame F
m x n

n-1

0

1

n-1

Reconstr. F*
n x m

0

1

n-1

Transmission

0

1

m-1 m-1
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Robustness to Losses

Losses
Modeled as erasures
To reconstruct, inverse transform must exist
Mathematically: any (n x n) submatrix of the frame matrix must 
be full rank

maximally robust to erasures (MR)

0
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n-1

Frame F
m x n

n-1

0

1

n-1

Reconstr. F*
n x m
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X
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What are Frames?

Generating system for Rn or Cn

Usually represented by a matrix F

0

1

m-1

0

1

n-1

F xFrame coefficients y

=

=
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Frame Properties
Maximally robust

(MR)
Tight
(T)

Columns are
orthonormal

Equal norm
(EN)

All rows have
equal norm

X

X

0

1

m-1

Any (n x n)
submatrix is full rank

n
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Biomedical Imaging

How to decide what to use?
Properties of signals
Properties of transforms
Task to perform
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Properties of Bioimages

Noise levels and types
Lack of “ground truth”
Large deviations
Low definition and contrast
Wide range of time- and frequency-localized 
features
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Transform Properties
Finite signal?

Boundary effects
Representation type

Redundant or not?
Orthogonal/tight vs. general bases/frames?
Adaptivity and localization
Properties of basis functions

Symmetry?
Issues for images

Sampling lattice
Basis functions

Separable vs. nonseparable
Real vs. complex
Orientation selectivity
Rotational invariance?
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Task to Perform

Denoising
Enhancement
Feature extraction
Classification
Segmentation
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Conclusions

MR toolbox
Rich enough to address a whole set of problems
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