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What is an inverse problem?

• A basic problem in medical imaging is to 
reconstruct an image of something inside 
the human body from minimally invasive, 
non-destructive measurements

• The measurements are related to the 
quantities of interest by a mathematical 
model, which usually describes how the 
“unknown” system would produce the 
measured values

• The basic “inverse problem” is to determine 
the system from sufficiently many 
measurements



A mathematical description

• The system is specified by state variables X.

• The measurements Y are functions of the 
state variables, Y=A(X) (otherwise the state 
variables don’t specify the state of the 
system). 

• In many cases the map A: X ---> Y is linear, 
so the inverse problem starts out as the 
problem of inverting A.



Steps in the analysis of an 
inverse problem (the ideal)

• Uniqueness: Decide which measurments Y 
suffice, in principle, to determine X

• Reconstruction: From an exact inversion 
algorithm B to find X perfect data Y. This 
sometimes involves characterizing the range of 
A, that the set of possible measurements.

• Practical implementation: Find a stable, accurate 
approximation to B that can be applied to a 
finite, noisy set of measurements.



A simple example

• We can measure         and would like to 
determine h and l. 

• We use the relation               and find that

θ1, θ2

tanθ = h
l

l =
tan θ1 − tan θ2

d tan θ2
h =

d tan θ1 tan θ2

tan θ1 − tan θ2



Models are useful for estimating 
sensitivity to errors

• Angles close to 90 degrees lead to instability 
in the predictions.

δh

h
= δθ1

(
2

tan θ2 sin 2θ1

− 1
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The Radon transform and filtered 
backprojection

ρ(x, y) = c2

∫

S1

−is∂sHsRρ(ω, 〈(x, y), ω〉)dω

ρ(xm, yl) ≈
d

2(M + 1)

M∑

k=0

N∑

j=−N

Rρ(〈(xm, yl), ω(k∆θ)〉, jd)φ(〈(xm, yl), ω(k∆θ)〉 − jd)

The filtered backprojection formula is very nice because 
it makes sense for very general data and can be rationally 

approximated.

Rρ(ω, s) =

∫

〈(x,y),ω〉=s

ρdl



General mathematical structure 
of inverse problems

• There are two general types

• A(X)=Y or A(X,B,Y)=0

• In the first type X is the state and Y are 
measurements and it is just a matter of 
inverting a map.

• In the second type X are known inputs,  Y 
are known outputs and B parametrizes the 
system. The problem is to determine B from 
sufficiently many input, output pairs



Linear examples I

• We consider the first type of problem, with 
A and linear map, so we want to solve AX=Y 
for X. In the end, we’re always working with 
a finite dimensional problem...for simplicity 
let’s assume A is invertible, so

• But....while A may be invertible it is 
frequently ill-conditioned.

X = A−1Y



Conditioning

• The condition number of A is defined to be

• Since A is usually a finite dimensional 
approximation to an operator in a Hilbert 
space the condition number often grows 
unboundedly as the dimension  of the space 
grows.

• If             is the uncertainty in the 
measurements, then       ,  the uncertainty in 
X satisfies

CA =
maxx !=0 ‖Ax‖
minx !=0 ‖Ax‖

= ‖A−1‖‖A‖

‖δX‖
‖X‖

" CAδY

δY
δX



Notation

• We use the notation            to mean that  
could be as large as    .    

a ! b a
b



Noise versus resolution, the 
SVD

• Because measurements are noisy, we are 
forced to limit the resolution to obtain stable 
algorithms. This is easy to see in terms of the 
singular value decomposition (SVD).

• The matrices U, V are unitary and 

• The                      are the singular values, and 
the condition number satisfies

A = UΣV t

Σ = diag(σ1, . . . , σN)

σ1 ≥ · · · ≥ σN

CA =
σ1

σN



Resolution vs. Noise
• The SVD allows us to express X in terms of 

the data:

• The smaller singular values usually correspond 
to singular vectors with more oscillation, 
representing higher resolution in the solution:

• Because of noise we need eliminate “small”,

•  singular values....this limits the resolution in X.

U = (u1, . . . , uN) V = (v1, . . . , vN)

vj ≈ [1, e
2πij
N ,...,e

2πij(N−1)
N ]

X ≈
∑

{σj>σmin}

〈uj, Y 〉
σj

X =
N∑

j=1

〈uj, Y 〉
σj

σj ≤ σmin



Linear examples, II

• Now we consider determining B from 
sufficiently many input-output pairs

• In fact, we can suppose that the inputs are 
arranged in a matrix,  X,  which is unitary so 
that B is given by

• Usually B is a small perturbation of A, which 
can be taken to mean 

• This implies that if      is the uncertainty in 
the inputs, then the uncertainty in the 
outputs is                   and so

(Xj, Yj)

(A+B)X=Y

B = Y X−1 − A

‖B‖ < σN(A)

‖δB‖
‖B‖

≈ CAδX

δX

δY ≈ AδX



Conditioning, the good, the bad 
and the ugly

• Let H be a Hilbert space and  A:H       H,  a 
bounded operator.

• (Good)  A is well conditioned if         is 
bounded

• (Bad)  A is mildly ill-conditioned if 

• (Ugly)  A is severely ill-conditioned if

A−1

σj(A) ≥
M

jm

σj(A) = O(j−m) for all m



Modalities and their inverse 
problems

• In many ways the best case scenario is 
represented by MRI. The inverse problem is 
simply inversion of the Fourier transform, the 
measurements are modeled as

• Here     models the receiver and       is a 
white noise process.

• Noise and the exponential decay impose 
effective limits on the resolution, even though 
the basic operator is unitary and hence well 
conditioned.

ρ̂j =

δ∫

−δ

ψ(t − tj)




∫

D

ρ(x)e−2πik(t)·xe− t+τ
T2(x)dx + nj(t)



 dt

ψ nj



MR image 1

• MR image showing the effects of noise.



MR image 2

• MR images showing the effect of the 
maximum frequency sampled on resolution.



X-Ray CT

• The measurement is modeled as an averaged 
Radon transform

• It can be interpreted as the Radon transform of 
a smoothed function.

• The inverse is mildly ill-posed, the inverse 
involves taking a derivative of the 
measurements:

Rρjk =

δ∫

−δ

ψ(s − sj)




∫

{〈(x,y),ωk〉=s}

ρdl



 ds

Rρjk = R[ρ ∗ ψ̃](sj, ωk),

ρ(x, y) = C

∫

S1

−i[∂sHsRρ](〈(x, y), ω〉, ω)dω



Reconstruction in X-Ray CT

• To obtain a stable reconstruction one needs 
to cut-off the data in Fourier space, this 
limits resolution.

• The SNR is proportional to the fourth 
power of the radiation dosage, so the 
resolution is limited by patient safety 
considsrations.



3d CT-imaging

• After many fallow years the introduction of 
cone beam machines, with many detectors, 
has lead to a significant renaissance of 
interest in 3d-reconstruction algorithms and 
problems in integral geometry connected to 
them.

• The problem of stable reconstruction with 
partial data sets remains largely unsolved and 
important....due to patient safety 
considerations. 



A X-Ray CT image

• High resolution, but poor soft tissue contrast.



Positron Emission Tomography

• In principle, the model for PET is the same as 
that for X-Ray CT, however, there is so much 
noise in the measurements, that this continuum 
model is not adequate and a less structured 
inversion method is usually employed. 

• The images have much less resolution.

• Using a generic linear or nonlinear optimzation 
inverse algorithm is typical in problems, that 
for one reason or another lack a good 
continuum model.



PET image

• They look good, but are very small!



Ultrasound, EIT, DOT

• In  principle, all these modalities are 
governed by similar models and are in 
essence inverse scattering problems.

• In ultrasound one can use a very crude 
model to obtain usable images, but there is 
very little mathematical processing and it is 
not possible to do much signal averaging to 
reduce measurement noise.

• Inverse scattering problems are severely ill-
posed. 



Inverse scattering

• A relatively simple example is provided by 
the Helmholtz equation. We illuminate the 
unknown object (modeled by q(x)) with a 
plane wave of frequency       and wavelength:

• The physics is modeled by

2πk

u = us(ω, k; x) + e2πikω·x

(∆ + q + (2πk)2)us = −qe2πikω·x where

r|us(x)| < C and r(
us

r
− ikus) → 0 as r → ∞.

λ =
1

k



Inverse scattering, II

• Measured data are the scattered waves      
which we encode as an operator on a 
Hilbert space                    . 

• The operator depends continuously on the 
data:

• The potential satisfies a very unfavorable 
estimate:

Λq : H1 → H2

‖Λq1 − Λq2‖H1,H2 ≤ C‖q1 − q2‖L∞

‖q1 − q2‖L∞ ≤
M

[
log

(
1 + ‖Λq1 − Λq2‖−1

H1,H2

)]m



The bad news

• The estimate on the previous slide says 
something like this: in order to determine q
(x) with ONE decimal place of accuracy, we 
need to measure        with TEN decimal 
places of accuracy

• But this is not the end of the story.

Λq



The Rayleigh limit
• In the 17th-19th centuries a great deal of 

effort was expended to improve the 
resolution of microscopes and telescopes.

• In the late 19th century,  Abbe and Rayleigh 
discovered that there is a limitation on the 
resolution, even if the optics are perfect. It 
follows from diffraction theory that the 
maximum resolution depends on the 
wavelength of the illumination:

• Methods exist to get beyond the 
Rayleigh...but not very far.

∆x > cλ



Evanescent waves

• A very similar effect is apparent from the 
plane wave expansion to a solution to the 
free space Helmholtz equation:

u(x, y, z) =

∫

ξ2
1+ξ2

2<λ2

ũ(ξ1, ξ2, 0)e
2πi(xξ1+yξ2)e2πizλ−1

√
1−λ2(ξ2

1+ξ2
2)dξ1dξ2+

∫

ξ2
1+ξ2

2≥λ2

ũ(ξ1, ξ2, 0)e2πi(xξ1+yξ2)e−2πzλ−1
√

λ2(ξ2
1+ξ2

2)−1dξ1dξ2.

The second integral contains the high frequency information 
in u along z=0 and it decays exponentially for positive z.

These are the evanescent waves, and this expression explains 
why it is so difficult to beat the Rayleigh limit.



The Born Approximation

• The measurement in a scattering situation is 
the scattering operator :

•        

• If the support of q is large compared to     
and q is small enough then we can use the 
Born approximation:

• This shows that, if we stay within the Rayleigh 
limit, then in principle we can do fairly well.

sq(ω, k, η) = lim
r→∞

re−2πikrus(ω, k; rη)

sq(ω, k, η) ≈ q̂(2πk(ω − η))



Recent work
• In a recent paper Mike Taylor gave the 

beginning of a reconstruction method for 
the acoustical scattering problem that 
showed that, if one remained within the 
Rayleigh, then one should be able to obtain a 
stable algorithm. However, there are 
significant problems in the non-linear part of 
the process

• Roman Novikov has given a non-linear 
algorithm that gives a stable Rayleigh limited 
reconstruction for the potential in the 
Helmholtz equation.



Beating the Rayleigh limit

• In many problems in Diffuse Optical 
Tomography, all of the measurements consist 
of evanescent waves. By using a carefully 
controlled experimental design allowing for 
vast oversampling (~10^4 times) and usage 
of an explicit SVD to control the noise in 
the reconstruction, John Schotland et al. 
have obtained better than expected images 
using this very problematic modality.



DOT images



Prospects, I
• Once a physical measurement is decided upon then 

mathematics provides the tools to relate the 
measurements to the state of the system

• The model then gives a fairly precise idea of what is 
reasonably attainable, given the physical realities of 
the measurement process: feasible datasets, noise, 
relaxation and signal strength.

• Many interesting and important inverse problems are 
largely unsolved, but mathematicians should direct 
their efforts towards potentially useful modalities.

• It may be best to change the “rules of the game.”



Prospects, II

• Many of the physical phenomena used in 
imaging modalities (especially MRI, 
ultrasound) are rich in new possibilities, 
Diffuison Tensor Imaging, Multiple quantum 
coherence, different types of waves in 
ultrasound....

• I see that the best chance for sugnificant 
progress lies in close collaboration among 
mathematicians, physicists, engineers and 
physicians. 

• A big challenge is to interest mathematicians


