

Outline

- Medical Imaging -Where are we today?
 - Goals, Acquisition modalities, Changing Practice
- How is image processing used today?
 - Review from data acquisition to surgical navigation
- How will image processing be used in the years ahead?
 - Illustrate areas where image processing will play an expanded role

The future is already here. It is just not evenly distributed.

Will Gibson

Medical Imaging Medicine's Inner Vision

- Tremendous growth and development
- Estimated 35 million studies in Canada each year
- Information rich specialty
- Dramatic advances in imaging equipment

Example

- One of the first specialties to use computers
- Digital technology has led to exciting changes
- Each generation offering improved resolution, image quality, speed

Goals of Medical Imaging

Two-fold

- 1) Provide accurate and timely diagnosis of disease and anomalies
 - Evaluate progression or regression of disease and response to therapy
- 2) Provide image guidance for intervention Accurate Diagnosis- Image and Interpreter
- All while minimizing cost, complications, radiation and contrast use

Today's Radiology Department

Digital information integral

Picture
Archiving
Communication
Systems (PACS

Reliance on complex computer systems

The Medical Imaging Work Environment

- Rapidity
 - -Patients and physicians waiting for results
- Criticality
 - -Treatment often changed by our findings
- Accuracy
 - –High cost of error
 - Missing a lesion can have severe consequences
 - False positive results also not good!

Imaging Modalities-Image Acquisition

- X-Ray projection imaging, fluoroscopy, angiography
- X-Ray Computed Tomography
 - sensitive to tissue density, atomic composition
- Nuclear Medicine-SPECT, Positron Emitting Tomography (PET)
 - Functional evaluation, variable radiopharmaceuticals
- Magnetic Resonance, MR Spectroscopy, fMRI
 - proton density, T1,T2 relaxation times, flow, other parameters
- Ultrasound
- Magnetoencephalography

Imaging Modalities

Basics of Medical Images

Analog or more commonly digital

- Conventional film/screen x-rays
- Digital images converted into matrix of smaller regions, numerical values
- Rows and columns of blocks called *pixels* or picture elements
 - 3D volume elements called voxels

Resolution vs. Image Size

 The larger the array, the smaller the pixel but the larger the image file

Typical matrix sizes

- CT/MR -512 x 512 x 12 bit depth or 1024 x 1024 x 12 bit
- Computed Radiography
 - 2048 x 2048 x 12 bit depth or 4096 x 4096 x 12 bit depth
- Digital Mammography
 - 50 micron pixels
 - 35-50 MB/image

Morphologic Imaging

Contrast and Anatomic Imaging

Working with Medical Images

- Complex!
- Data Limitations
 - Variable equipment, contrast mechanisms, data acquisition techniques, non-isotropic slice thickness, slice gaps, artifacts
- Safety limitations-dose, SNR
- Tremendous variability in Human Data within and between individuals
- Difficult to validate performance in many clinical areas
- Relationship between human perception and art of medicine poorly understood

Artifact from multiple pacing wires

Increase in Imaging Modality Capabilities

- Image Reconstruction improvements
- Rapidity of scanning
- Volumetric coverage with isotropic voxels
- Screening
 - Whole Body CT
 - Whole Body MR
- Dynamic contrast studies
 - MR urography, temporally resolved angiography

Temporally Resolved MR Angiography

Volumetric MR collected every 4-6 secs

From Morphology to Biology

Anatomy

Perfusion

Diffusion

Metabolism

Receptors

Gene

Expression

Signal

Transduction

Cell-function

Biology

Growth of Physiologic and Functional Imaging

- Multitude of imaging tests now dedicated to providing physiologic, biochemical, structural data
- More than simple morphologic information, often abnormal before apparent on anatomic imaging
- MRI-remarkable growth
 - functional MRI, biochemical data from MR spectroscopy, diffusion, diffusion tensor imaging, permeability
- MEG, PET etc
- Quantification

Magnetic Resonance Spectroscopy

Canavan disease: asylaspartase deficiency

6 week old with macrocrania. Basal ganglia and thalami subtly abnormal in signal.

MRS shows markedly elevated NAA peak

Spectroscopic Imaging

NAA overlay

Lipid Lactate overlay

Functional Brain Imaging

- Noninvasive tool used in study of brain function
- Can be used to document sensory, motor or cognitive function
- With MR special sequence is performed which demonstrates the alterations in blood flow to the brain
- Active parts of the brain utilize more oxygen and receive more blood flow than less active regions
- Data is analyzed and superimposed onto detailed anatomic MRI images

fMRI BOLD: Rapid Overview

Basal state

capillary

bed

venules

Activated state

- normal flow

arterioles

- basal level [Hbr]
- basal CBV
- normal MRI signal

- = HbO₂ = Hbr
- increased flow
- decreased [Hbr] (lower

field gradients around vessels)

- increased CBV
- increased MRI signal (from lower field gradients)

Magnetoencephalography (MEG)

- Also non-invasive test
- Measures magnetic fields produced by brain activity
- 3D image fusion of MEG mapped onto MR images known as Magnetic Source Imaging (MSI)

Magnetic Field Generation

MEG

FirstOrder Radial Flux Transformers

Sensing Coil Array 151-Sensing Locations

Whotle-Cortex MEG Systemem

Magnetic Fields

B (Teslas)

Equivalent current dipole on MEG

Quantification

- Increasingly important aspect of care
- Little enthusiasm in radiologic community
 - Lack of standardization even for simple measurements- tumor areas, volumes
 - No consensus for how to display quantification with images
- Quantification already significant aspect of cardiac evaluation

Relative Blood Volume over the cardiac cycle

R/L = 73/27

R/L = 99/1

Image Processing

- Medical image processing is the manipulation and analysis of medical image-based digital data to enhance and illuminate information within the data stream
- Processing may be automatic or interactive under human control

How is Image Processing Used in Medical Imaging Today?

- All throughout data stream
 - -Data Acquisition, Transmission, Visualization
- Growing roles for Image Segmentation, Registration, Navigation and Image Analysis
 - Specialized evaluation Dynamic contrast enhanced
 - -Computer aided detection and diagnosis

Common Digital Imaging Processing Operations Used in Digital Diagnostic Imaging Technologies

Digital Imaging Modality	Common Image Processing Operations
Computed tomography	Image reformatting, windowing, region of interest (ROI), magnification, surface and volume rendering, profile, histogram, collage, image synthesis
Magnetic resonance	Windowing, region of interest (ROI), magnification, surface and volume rendering, profile, histogram, collage, image synthesis
Digital subtraction angiography/digital fluoroscopy	Analytic processing, subtraction of images out of a sequence, gray scale processing, temporal frame averaging, edge enhancement, pixel shifting
Computed radiography/ digital radiography	Partitioned pattern recognition, exposure field recognition, histogram analysis, normalization of raw image data, gray scale processing, windowing, spatial filtering, dynamic range control, energy subtraction

Image Processing at Acquisition

- Black box
 - Generally not evident
 - Proprietary nature
- Basic tasks involved in filtering and preprocessing the data before detection and analysis by machine or human operator
 - noise removal, contrast and feature enhancement
- Opens new avenues for Digital Radiography
 - Dual energy subtraction
 - Temporal Subtraction
 - Tomosynthesis

Surface Intensity Correction

Image Processing:Contrast Enhancement in Computed Radiography

MUSICA® - Multi Scale Image Contrast Amplification

Image Visualization

- Most recognized type of Image Processing by radiologist
- Originally displayed in static form on film
- Now dynamic display with soft copy viewing on PACS
- Often dedicated processing workstations
- Image manipulation now possible
 - Modification of contrast, brightness, magnification
 - Different presentation formats

CT Axial images – often 1000+

Image Visualization

- 3D reconstruction techniques allow condensed representation of relevant information
- Variety of formats: Multiplanar reformat, MIP, Minip, Raysum etc
- Specific application depends on task needed and viewer
 - Surgeon and radiologist
- Two basic classes of volume visualization in use today
 - Surface extraction algorithm
 - Volume rendering algorithm
- May overcome some perceptive issues of structure shape and orientation

Multiplanar Reformat

3D Display-Maximum Intensity Projection

- Maximum Intensity Projection
 - Collapses hundreds of images into 10-20
 - Cast rays perpendicular to viewing plane (along line of sight)
 - Pixel value is the value of the brightest voxel along that ray
 - Easy and objective to create
 - Artifacts from superimposition can be misleading
 - No quantitative info provided

Raysum

Shaded Surface Display

- Define the Surfaces of objects of interest. Assign color and opacity to each surface in the view, and the viewing angle
- Model light's interaction with object surfaces
- Strengths
 - Fast to render, clearest images if unhelpful parts edited out
 - Weaknesses
 - Requires segmentation and classification to define object surfaces
- Surface Extraction
 - Threshold dependence
 - Issues of noise, contrast level
 - Only surface information displayed

Shaded Surface Display

Volume Rendering

- Display objects of interest directly from the volume image
- Strengths
 - Versatile
 - No- presegmentation step
- Weaknesses
 - More computer intensive
 - Requires tissues that can be differentiated on the fly (intensity or other criteria)

Image Navigation

- Virtual environment becoming increasingly important in medicine reducing invasive risks
- Virtual endoscopy most prevalent
- Virtual bronchoscopy, colonoscopy, angioscopy

All these image techniques require dedicated time, effort, consideration of desired format and specific expertise to perform

Image Registration

- Goal- align one image with base image
- Doesn't need to be of the same type
- (e.g. register PET with CT or MRI)
- Monomodality vs Multimodality
- Temporal registration often used following contrast administration
- Inter subject matching- Telaraich

Positron Emission Tomography (PET)

- Glucose tagged with radioactive isotope and injected into patient demonstrates changes in body's usage of glucose
- PET can be now directly fused with CT Scan images acquired simultaneously

MRI, PET

Left

Images courtesy of Dr. Ayako Ochi

Dipole source localization on 3D MRI

Functional MSI

Central Sulcus

Surgical Navigation

- Key use for image registration, visualization tools
- Tracking of surgical navigation instruments, positions of surgical instruments within frame of reference of operating room and patient's 3D reconstruction
 - Neurosurgery
 - Long distance laparoscopic surgery
- Can allow patient specific pre-operative surgical planning

Laser Registration

Infra-Red Tracking system

Can utilize active or passive pointers

Referencing is created by a registration program correlated to a special frame.

•System allows for correlation between multiplanar reformatted images and 3-D objects

•Image courtesy of BrainLab A. Burwick

Frameless stereotaxy

Frontal Cortical Dysplasia

14 Yr old girl with cortical dysplasia -Surgery to insert and then monitor a subdural grid

MEG combined with 3-D Imaging Provides Accurate Mapping for Surgery

Patient with epilepsy, mapping to pre-motor cortex

Current Problems

- Growth of capabilities of image modalities generating thousands of images
- Creates problems in storage, viewing and interpretation
 - Example CT scan soft tissue windows, bone windows, lung windows

PACS and Image Processing

- Constraints
 - Closed system, hard to add features from outside the PACS vendor
- Limited tools on current PACS workstations
- Data pre-processed
 - E.g.-separate storage for bone, lung and soft tissue windows
- Improved workstation design needed to handle multimodality image display

Areas for Improvement

- Throughout data stream
- At acquisition
 - All modalities increasingly digital acquisition allows new opportunities: Multidetector CT, Parallel imaging in MR
 - For example Digital Radiography can overcome altered radiographic appearance and reduce dose with introduction of copper filtering into data acquisition pathway

Filter algorithms

Puetter RC, Gosnell TR, Yahil A. Digital Image Reconstruction: Deblurring and Denoising. Annu. Rev. Astron. Astrophys. 2005. 43:5.1-5.56

Raw (a, c, e) and Pixon (b, d, f) processed phantom data at three different count rates

Unprocessed 120 second data versus Pixon processed data acquired for only 3 tenths of that time. Note improved visualization of sternal segments. Pixon processing may be used to reduce radiation exposure and/or reduce the likelihood of patient motion, without loss of imaging detail.

Improved Segmentation

- Removal of distracting overlying structural noise
- How best to display information?
- Anatomic depiction?
- Need standardized approach optimized for visual system of the radiologist

Vast Amount of Data

Image Visualization

- Improved aids in displaying information needed
- Standardization will be critical to reduce errors ensure all info looked at
- Improved integration of multiple modalities and better integration with surgical equipment
 - colors- abnormal, increased/decreased

Multispectral analysis - ISODATA

Isodata map from tissue vectors

DCE permeability mapping

Blood Volume

KPS
Permeability

Computer-Aided Detection

- Many radiologic abnormalities are in fact recorded on the image with today's technologies but are not perceived by the observer
- Processing can be applied to optimize detection of these abnormalities
- Still in infancy
- Area of extensive research with application to multiple modalities and organs: Chest, Colon, Breast, Brain, Liver, Kidney, Vascular, Skeletal
- Commercialization Started for Breast masses, Lung Nodules

Computer-Aided Diagnosis

- Computer output utilized by radiologist as a second opinion
- With CAD the computer doesn't necessarily have to be better than the radiologist, but the combination should be better
- Goal is to reduce oversight error and reduce variation between observers

Generic Flowchart for the Computerized Analysis of Breast Images

Can be stored in DICOM fields or printed on paper for patient folder

CAD for differential diagnosis

- CAD/ detection reduces missed diagnosis
- CAD for differential diagnosis
- Improves quality of report, radiologist differential diagnosis
- Usefulness of Similar Images
- Need for large unique databases and sensitive tool for finding images similar to the unknown case
- It is difficult to construct feature sets of similarity

Intelligent Workstation For Breast CAD

CARS 2000 RSNA 2001 IWDM 2002 RSNA 2002

Giger et al.

Benign Case

Change Detection

- Medical image comparison common aspect of daily practice
- Some tools exist for this but not yet widely available in clinical arena
- Hard to deal with extraneous effects
 - chemotherapy for example
- Image alignment for comparison would be great help
- Automated evaluation works best with volumetric datasets without gaps

Additional points

- Exploitation of large databases which are being collected clinically
- Matching databases of normal anatomy, normal variants and pathology classification
- Training issues- general radiologist versus specialist

Conclusions

- Digital images with improved quality now available
- Computer capability now available for analysis
- Image Processing will be key aspect of most medical imaging studies in future
- Accuracy and efficiency can be improved
 - especially in detecting and interpreting abnormalities within large data sets
- Need to ensure image processing tools are optimized for the perceptual and cognitive skills of the radiologist

TI.

步